2023年"中银杯"四川省职业院校技能大赛(高职组)

"数控机床装调与技术改造"赛项

(总时间:3小时)

场次:

工位号:

一、选手须知

请各位选手赛前务必仔细研读

1. 本任务书总分为100分,考试时间为3小时。

选手在实操过程中应该遵守竞赛规则和安全守则,确保人身和设备安
 全。如有违反,则按照相关规定在考试的总成绩中扣除相应分值。

3. 记录表中数据用黑色水笔填写, 表中数据文字涂改后无效。

4. 考试过程中考生不得使用自带 U 盘及其它移动设备拷贝相关文件。

5. 禁止使用相机及手机对试题进行拍照, 否则取消考试资格。

6. 选手签字一律按照第二次抽签拿到的号码签字,不得实名签字。

7. 本任务书 16 页。如有缺页,请立即与裁判联系。

二、赛卷说明

 在比赛过程中需按照任务书的要求完成,需要填写的测量数据、参数修 改位和修改值、绘制的图等,应按照任务书要求填入相应的表格中。

2. 每一项任务完成后,均需请裁判及时验收任务完成成果。

3. 选手在任务一: 主轴加装改造的精度检测环节中, 在记录检测数据时, 应向裁判示意, 并经裁判确认方为有效。

4. 选手在任务二:数控机床故障诊断和排除环节中,完成自己所能排除的机床故障后,在指定表格中填写"故障现象(报警号等)"、"故障原因"、"排除方法",并仅有一次机会请求向裁判员验证,在裁判员的监督下,验证所完成的故障排除情况。选手可提出放弃故障排除,并请裁判和技术支持人员清除所有故障,恢复机床正常运行,此时只能一次性地清除所有非排除的故障,每一个未排除的故障倒扣0.5分。

5. 选手在任务四:加工中心功能开发任务完成后,向裁判示意功能验证,可以几个模块的功能一起验证,也可每完成一个功能块申请一次验证,验证后由裁判确认完成有效。任务五项目按步骤评分,选手如果仅完成部分内容,应向裁判申请步骤验证,并按照评分标准给予完成部分的分值。

1

6. 本任务书包括六项技术内容, 配分如下:

- 任务一: 主轴加装改造(15分)。
- 任务二: 数控机床故障诊断和排除(20分)。
- 任务三: 手夹和平口钳安装与调试 (5分)。
- 任务四:加工中心功能开发(20分)
- 任务五:加工联调与验证(30分)
- 任务六:职业素养和安全意识(10分)。
- 三、实操工作任务

注意: 数控系统 IP 固定为: 172.18.120.13; 机器人 IP 固定为 172.18.120.14; 电脑 IP 已设定完成; 以上 IP 均无需修改。

任务一: 主轴加装改造(15分)

题目: 主轴的装配、检测与调整。

本任务共分六个项目(参见下图)。

①工件准备与清洁;

②主轴轴承安装;

③主轴轴承回转精度调整;

④前后轴承锁紧螺母锁紧;

⑤实测主轴套筒端面到主轴套隔台的长度 K1 值,实测叠加放置高度 K2 值,实测主轴前端盖凹台深度数值 H,计算主轴前端盖压紧量 A,以及检测主轴锥孔跳动值△s;

⑥机械主轴与主轴测试台对接安装。

完成过程中的相关数据记入表 1-1 中,请裁判验收各个项目任务的完成成 果。所涉主轴总装图及其主轴零件明细表由赛场提供。

序号	项目内容
项目一 (1分)	工件准备与清洁。在零件摆放区的主轴零部件进行清点、核对,并按照正确的 工艺步骤清洁,按照安装工艺步骤将零部件整齐码放到装配区,如发现零部件 上有毛刺,按照正确的工艺方法去除毛刺。
项目二 (2分)	前主轴轴承安装:根据主轴安装工艺要求安装主轴轴承,正确选择轴承安装方向,轴承组对形式正确。(请裁判签字确认): 测量并调整外圆与主轴同心=mm。
项目三 (2分)	主轴轴承回转精度调整:测量和调整前轴承外环与主轴后轴承轴径接触外圆之间回转跳动,选手将测量结果填入下式(请裁判签字确认): △r=mm, 检验前轴承外环端面跳动 △a=mm
项目四 (1分)	前后轴承锁紧螺母锁紧。选手确认轴承系轴向预紧完成后,请填写如下数据, 在力矩扳手调至前轴承预紧力矩值时,选手调整力矩扳手的大小 (请裁判签字确认): 前轴承=Nm 后轴承=Nm
项目五 (5分)	用深度尺实测主轴套筒端面到主轴套隔台的长度 K1 值,选手记录以下数据 (请裁判签字确认): K1=mm K1 ₁ =mm K1 ₂ =mm

表 1-1:主轴加装改造事项及记录

序号	项目内容
序号	项目内容 K1_a=mm x测叠加放置高度 K2 值,选手记录以下数据(请裁判签字确认): K2=mm K2_a=mm K2_a=mm x2_a=mm K2_a=mm K2_a=mm K1_a=mm H=mm H_a=mm H_a=mm H_a=mm H_a=mm
	H _n =mm 按照工艺要求计算主轴前端盖压紧量 A=K2-K1-H: A=mm 检测主轴单锥孔跳动△s,选手记录以下数据(请裁判签字确认):
	mm
项目六 (4分)	女衣加住: S1-将主轴安装在赛场提供的主轴测试架上; S2-安装交流异步电动机于电机座上; S3-预装弹性联轴节(对接两轴); S4-调整交流异步电机轴与主轴传动芯轴的同轴度; S5-锁紧联轴节; S6-安装安全防护罩。 要求: 1) 机械主轴在测试台上应调整至主轴中心线与电机轴中 公线同轴,联轴节安装规范。 2) 调整电机轴与主轴传动芯轴同轴,选手采用百分表或 千分表检测。记录实测数据,(请裁判签字确认): 电机轴与主轴轴芯同轴度: mm (<<0.2mm得4分,0.2 <x<0.4mm得2分,>0.4mm不得分) 3) 异步电机安装时提供 0.02mm 和 0.04mm 铜皮做调整 垫。 4) 上述每完成一步均应协助裁判员检测、确认。 5) 电机轴与主轴轴芯同轴度测出数值>0.5mm 时,不允许 带电旋转。 6) 安全防护罩安装合格后,方可通电检查。</x<0.4mm得2分,>

任务二: 数控机床故障诊断和排除(20分)

故障排查涉及立式加工中心技术指标、系统参数、伺服参数及 PLC 程序, 最终以解除报警、准确实现功能动作为完成任务。

要求:

1. 根据表 2-1 第三列"技术指标检验标准",排除故障现象。

将每一个已排除故障的现象、故障原因及修正参数写入表 2-2:数控机床维修记录表中,并向裁判报告,请求裁判签字确认故障排除的工作成果。
 当申请裁判和技术人员恢复机床时,每一个未排除的故障倒扣 0.5 分。

 选手不得全部清除数控系统数据和梯形图。一经发现,按要求排除全部 故障的情形计分。

序号	检查事项	技术指标检验标准
1	急停检查	急停按钮起作用
2	伺服驱动检查	解除伺服报警
2	进给伺服移动无报	X/Y/Z 轴显示正常,在 JOG 方式和录入方式下,倍率 100%
ა	藝	移动各轴,能正常移动无报警
1	何服移动亡向正确	X/Y/Z 轴在 JOG 方式下+/-移动确认轴运动方向符合立式数
4	问瓜侈幼力问止朔	控铣床相关坐标定义标准。
5	进给轴软/硬限位	检测各轴运行范围符合该机床行程规格且限位有效
6	从标轴移动准确	检测手轮或 MDI 方式下进给轴移动的实际距离与显示数值
0	生你抽秽幼稚娴	相等(需要使用百分表进行演示)
7	进给轴倍率修调正	在 JOG (手动)和 MDI 方式下移动进给轴,调整倍率开
1	确	关,轴按照指定倍率移动
8	手轮方式下轴选正	在手轮方式下, 切换手轮轴选开关信号, 能够正确选择相
0	确	应的坐标轴,实现 X/Y/Z 轴移动。
a	手轮方式下倍率正	在手轮方式下,切换手轮倍率信号,移动 X/Y/Z 轴,能够
5	确	正确实现相应的倍率。
10	进给轴伺服驱动性	通过伺服伏化 观察周图形误差有明显改差
10	能匹配	
11	主轴的启动和停止	在 IOG (手动)和 MDI 方式下,能够启动和停止主轴。
11	正常	
12	主轴定向准确	在 MDI 方式下,执行 M19,主轴准停准确。
13	主轴旋转方向正确	在 MDI 方式下,执行 M03 S 50 检查主轴的旋转方向正确
14	主轴速度和倍率正	在 MDI 方式下,执行 M03 S300 检查主轴的旋转速度和各
11	确	档倍率正确
15	机床操作面板功能	检查机床操作面板各按键、旋钮、指示灯功能正常
10	正常	(工作选择方式、循环启动、进给暂停、单段、跳段)

表 2-1 故障检查事项

表 2-2	数控机床维修记录表

序号	故障现象	处理方案	学生 签字	裁判 签字
		原因		
1		解决方法		
		已排除()未排除()申请排除()		
		原因		
2		解决方法		
		已排除()未排除()申请排除()		
		原因		
3		解决方法		
		已排除()未排除()申请排除()		
		原因		
4		解决方法		
		已排除()未排除()申请排除()		
		原因		
5		解决方法		
		已排除()未排除()申请排除()		
		原因		
6		解决方法		
		已排除()未排除()申请排除()		
		原因		
7		解决方法		
		已排除()未排除()申请排除()		
		原因		
8		解决方法		
		已排除()未排除()申请排除()		
		原因		
9		解决方法		
		已排除()未排除()申请排除()		
		原因		
10		解决方法		
		已排除()未排除()申请排除()		
		原因		
11		解决方法		
		已排除()未排除()申请排除()		
		原因		
12		解决方法		
		已排除()未排除()申请排除()	 	
		原因		
13		解决方法		
		已排除()未排除()申请排除()		

序号	故障现象		处理方案	学生 签字	裁判 签字
		原因			
14		解决方法			
		已排除()未排除	()申请排除()		
		原因			
15		解决方法			
	已排除()未排除()申请排除()				
		<u></u> 八	і	20 分	

任务三: 手夹和平口钳安装与调试 (5分)

根据赛场提供的电磁阀、气管及传感器,完成表 3-1 中任务,①手夹和机 床平口钳安装与调试;②机器人手夹功能验证。

表 3-1 手爪和平口钳功能验证事项	
--------------------	--

序号	项目	项目内容
1	手夹和平口	在加工中心上安装平口钳,调整合适气压 (0.5-0.6Mpa)。
2	钳安装与调	
3	试	在 MDI 状态下,使用 M72 控制机床平口钳松开, M73 控制平口钳夹紧。
4	机器人气爪	机器人输出 RO[2]=ON 气爪松开
5	功能验证	机器人输出 RO[3]=ON 气爪夹紧

任务四: 机床功能开发(20分)

根据赛项提供的测头、主轴部件。利用机床数控系统,完成:①智能制造 工件测头;②开通模拟主轴功能、主轴单元通电空载测试;③ PC 机与 CNC 互 联互通;④完成指定功能的开发。

4-1. 加装智能制造工件测头(6分)

根据所提供的测头,按照表 5-1 工件测头加装项目表中第三列要求,完成 各项任务。每一个项目任务完成后均需请裁判验收任务完成成果。

序号	项目	要求
1	放置测头 接收器	将测头接收器固定于电气柜顶部合适位置
2	测头电气 连接	1) 连接测头接收器电源线。 2) 连接"工件测头开启"信号线至 PLC 输出点 Y10.7, 并在 PLC 中

表 4-1 加装智能制造工件测头事项

序号	项目	要求
		编辑 M88 开启测头/M89 关闭测头的梯形图。 连接"测头状态"信号线至数控系统测量输入点 X11.7 4)在 MDI 下开启测头,输入测量信号测试指令"G91G31X50F50",
		待机床运动后,用手触碰测头测针,以模仿机床碰到了测针,观察机床 能否正确地停止。
3	测针对中 调整	利用百分表或千分表调整测针圆跳动,使之不超 0.03mm。 记录测量值(请裁判当场确认)。
4	测头径向 标定	 1)用磁铁固定或利用工作台上的台钳轻夹自备环规,保持上表面平 行工作台面。 2)将测头装至机床主轴,并手动定位至环规大约中心位置,测球低 于环规上表面。 3)M88;(测头开启代码) 4)MDI编写并执行测头标定宏程序: G65P9901M102.D; D:环规准确直径;标定结果位于:#500,#501,#502,#503。 5)M89;(测头关闭代码)
5	环规直径 测量	 同上1、2步骤。 3) M88; (测头开启代码) 4) MDI 下执行 G65P9901M2.D_。 D:环规准确直径。 注: #100 存储环规直径测量值。 并将环规直径值存储到#610,编写#610=#100并执行。 5) M89; (测头关闭代码)

4-2 开通模拟主轴功能、主轴单元通电空载测试(4分)

根据任务二装配好的机械主轴和异步电机,在本节中根据赛场提供的变频器技术资料连接变频器,并通过机床 MDI 或操作面板备用键控制主轴旋转500rpm 进行测试。具体要求:①完成数控系统模拟接口→变频器→三相异步电机的硬件连接;②完成数控系统模拟接口功能开通(数控系统侧参数设置、PLC 编辑);③变频器参数设置。选手依据表 4-2,在任务完成过程中或任务完成后,请裁判验收任务成果。

序号	项目	项目内容
1		系统模拟电压及信号线连接正确
2	变频器连	模拟主轴参数设置正确,模拟主轴被激活
3	接与调试	变频器通电及参数设置正确
4		主轴旋转成功

模拟主轴正转输出信号 Y12.0,模拟主轴反转输出信号 Y12.2。

4-3. PC 机与 NC 互联互通(4分)

根据现场提供设备接口和以太网线,实现 PC 机与 CNC (数控系统)的连

8

接。系统与 PC 机联通中,要求检查在数控系统端操作,可将 PC 上的程序文件 复制到数控系统。选手在任务完成后,根据表 4-3,请裁判验收任务完成成 果。

数控系统 IP 固定为: 172.18.120.13; 机器人 IP 固定为 172.18.120.14; 电脑 IP 已设定完成: 以上 IP 均无需修改。

项目内容	调整结果	项目内容			
PC 与 NC 互联互通	参数调整	PC侧IP地址设置正确			
		NC侧IP地址设定正确			
		数据线连接成功			
		NC 侧调用程序成功			

表 4-3: PC 与 NC 互联互通事项

4-4. 完成指定功能开发(6分)

利用富余的 M 指令,开发 PLC 程序,以及参数设置,实现:

(1) 通过 MDI 键盘输入 S 指令、M 指令控制主轴正/反转。

(2) 通过机床操作面板备用键(参照表 4-4)作为"主轴正转"、"主轴反 转"、"增速按钮"、"减速按钮"、"主轴停止",按下哪个键后,其对应的按钮 LED点亮,通过增速/减速按钮每按一次增/减速 10%。

(3) 模拟主轴指令推荐见表 4-5。

(4)选手根据表 4-6:完成指定功能开发(实现模拟主轴调速控制功能)后,请裁判验收任务完成成果。

新定义内容	在操作面板上定义	输入地址	输出地址
主轴正转	K2	R901.5	R911.5
主轴反转	К3	R901.6	R911.6
主轴停止	K4	R901.7	R911.7
增速按钮	5	R906.1	R916.1
减速按钮	6	R906.2	R916.2

表 4-4 备用键对应的输入和输出地址

表 4-5 模拟主轴指令推荐

分类	正转/反转/主轴停	备注
主轴指令	M33/M34/M35	也可自行定义未用 M 代码
主轴速度指令	S	

序号	项目	项目内容
1	PLC 编程	MDI方式下执行主轴控制 M/S 代码,主轴旋转
2		主轴正转按钮/主轴反转按钮/LED 有效
3		增速按钮/减速按钮/ LED 有效
4		主轴停止按钮/LED 有效

表 4-6 完成指定功能开发(实现模拟主轴调速控制功能)事项

任务五:加工联调与验证(30分)

5-1. 运动精度检测——球杆仪检测圆轨迹运动精度(6分)

按照表 5-1 中第二列"检测项目"和第三列"要求",使用球杆仪对机床 指定位置按 GB17421.4 或 ISO230-4 标准要求测量 XY 平面圆度(假定机床温度 20℃,膨胀系数 11.7)。并填写和保存数据。

序号	检测项目	检测内容	设定数据(选手填 写)	裁判 签字
1	编制 X-Y 平面测 试程序(可以借 鉴仪器帮助手册 中的已有程序), 并输入数控系统	半径: 100mm, 进给速度 1000mm/min		
2	设定球杆仪测试 中心	在机床上建立测试程序的 坐标系原点	记录所设定坐标系 原点: X: Y: Z:	
3	测试程序调试	空运行测试程序		
4	蓝牙连接调试	将球杆仪与电脑连接起来		
5	配置校准规	配置校准规 30mm~100m m中任意一种	校准规校准后球杆 仪实际长度:	
6	安装球杆仪并测 试	测量后存储测试报告到选 手文件夹		
7	按 GB17421-4 分 析圆度误差		记录圆度误差值: G (CW) 顺时针圆 度 G (CCW) 逆时针圆 度	
8	给出该处 X-Y 平 面垂直度误差		记录垂直度:	

表 5-1: 运动精度检测事项

5-2. 编写相应 PMC,实现软件与机器人上下料流程同步(6分)

根据赛项提供的数字化虚拟制造仿真软件、机器人及控制系统、数控机床 编写相应 PMC,实现仿真软件与实际机器人上下料流程同步。数字化虚拟制造 仿真软件与系统互联地址见表 5-2。当机器人上下料流程运行时,仿真软件同 步实现以下功能(主要考核每个步骤开始动作同步,后续速率差别不作为考核 点):

初始状态:真实机床门关到位,真实平口钳夹紧,机器人上手爪已手动装配,虚拟仿真通讯成功。

(1) 机器人输出 DO[105],真实机床回到取放料位置,即Y轴、Z轴回到第
一参考点(G91 G28 YO ZO), X轴回到第二参考点(G30 XO)。此时虚拟仿真软件中毛坯开始出料(Y24.0);

(2)真实机器人移动到抓料位置,松开机器人手爪。虚拟仿真软件中机器人松开手爪并自动移动到传送抓料位置;

(3)真实机器人手爪夹紧,移动到机床上料位置,虚拟仿真软件中机器 人手爪夹紧,移动到机床上料位置;

(4) 真实机床安全门开, 虚拟仿真软件中安全门开;

(5) 真实数控机床平口钳松开,机器人移动到平口钳里放置毛坯,虚拟 仿真软件中的数控机床平口钳松开,机器人移动到平口钳位置放置毛坯;

(6) 真实机器人手爪松开, 虚拟仿真软件中机器人手爪松开;

(7) 真实数控机床的平口钳关,机器人移动到机床门外;虚拟仿真软件中的平口钳关,自动移出到机床外:

(8) 真实数控机床安全门关,程序运行,虚拟仿真软件中数控机床安全 门关,开始加工。

地址	含义	仿真→机床	地址	含义	机床→仿真
X2	机器人到达机床上料位置	X24.0	Y2	添加毛坯	Y24. 0
ХЗ	机器人手爪到平口钳位置	X24.1	¥5	机器人手爪松开	Y24.1
X4	毛坯出库到位	X24. 2	Y6	机床门打开	Y24. 2

表 5-2 软件与系统互联地址

11

地址	含义	仿真→机床	地址	含义	机床→仿真
X5	机器人移动到传送带抓料位置	X24.3	¥7	平口钳松开	Y24. 3
X9	机床启动加工	X24.4	Y8	机床加工完成信号	Y24.4
X10	机床门打开到位	X24.5	Y12	机器人手爪夹紧	Y24. 5
X11	机床门关闭到位	X24.6	Y13	机床门关闭	Y24. 6
X12	平口钳松开到位	X24.7	Y14	平口钳夹紧	Y24. 7
X13	平口钳夹紧到位	X25. 0			
X16	移动到成品放置位置	X25. 1			

5-3 机器人上下料编程,手动运行(8分)。

根据表 5-3 提供的信号地址,示教编制机器人程序,实现机床在自动模式下,完成机器人上下料流程:

CNC	РМС	机器人	PMC 虚拟	ROBOT	10
机床门开到位1	X9. 0	דע[101]	D701 0	快换	RO[1]
机床门开到位2	X9. 1	D1[121]	R701.0	手爪松开	R0[2]
机床门关到位1	X9.2	[נפנ] דת	D701 9	手爪夹紧	R0[3]
机床门关到位2	X9.3	D1[123]	R701. Z	喷嘴吹气	R0[4]
加工完成信号	F9.4, R701.4	DI[124]	R701.3		
机床取放料到位	F96.0,F94.1,F94.2	DI[125]	R701.4		
机床门开	Y8. 0	DO[101]	R700. 0	手爪松开到位	RI[1]
机床门关	Y8.1	DO[102]	R700. 1	手爪夹紧到位	RI[2]
平口钳松开	Y8.2	DO[103]	R700. 2	手爪在机器人末端	RI[3]
平口钳夹紧	Y8.3	DO[104]	R700.3		
启动加工	G7.2	DO[105]	R700.4	DI 信旦拘重扔到	巴力描述
机器人在机床外	防干涉功能	DO[106]	R700. 5	DI后亏均而以上	1. 八 代 1人

附表 5-3: 机器人应用功能开发信号表

(1)初始状态:立体库上有 A1、A2 工位均放置上毛坯,机床处于自动模式,机器人在安全位置,示教器模式为 ON,机器人控制柜模式为 T1 模式;

(2) 机器人自动去取手爪 (手动装夹,此项不得分,后续流程正常得分);

(3) 机器人从 A1 工位抓取毛坯 1;

(4) 机器人上料到机床平口钳中;

(5) 机床门关, 数控机床运行模拟加工程序(暂停10秒, G04 X10);

(6) 毛坯1模拟加工完成,机床门开;

(7) 机器人下料, 毛坯1放置到立体库 B1 工位;

- (8) 机器人从 A2 工位抓取毛坯 2;
- (9) 机器人上料到机床平口钳中;
- (10) 机床门关, 数控机床运行模拟加工程序(暂停10秒, GO4 X10);
- (11) 毛坯2模拟加工完成,机床门开;
- (12) 机器人下料, 毛坯2放置到立体库 B2 工位;
- (13) 机器人完成流程,自动放置手爪。

注意:调试好机器人程序后,请求裁判验证。此验证是一次性的,即一次 验证时出现安全性问题,立即停止 5-3 中的任务,进行最后的打分。

5-4 加工程序编程(4分)。

选手依据 GB/T-20957.7-2007《精密加工试件》标准,按照赛项任务书的 图纸要求(图 5-1,该件毛坯为一块方料,其中 70×70×10 段为平口钳夹持部 位,事先已加工成形),在不使用刀具的情况下,编写零件的数控加工程序,程 序名为 01122,并在数控机床进行程序模拟运行,系统画面上中显示刀具轨迹 路线即可。

5-5 机器人上下料流程,自动运行(6分)。

(1)初始状态:立体库上有 A1、A2 工位均放置上毛坯,机床处于自动模式,机器人在安全位置,示教器模式为 0FF,机器人控制柜模式为 AUTO 模式;

(2)选手和裁判均退到安全区域,选手手拿示教器,如出现安全情况及时拍下急停。

(3) 按照 5-3 任务中第(2) 至(13) 项步骤运行,但第(5) 与第(10) 项为运行零件加工程序(01122)。

(4) 此验证是一次性的。

图 5-1 试切件图

六、职业素养和安全意识(10分)

本赛项专设职业素养和安全意识评价环节,用于评价选手在竞赛全程的职业素养水平和安全意识。选手参照表 6-1 中的要求执行。

序号	项目	要求
1	安全意识	着装、电工鞋及其他劳动防护得当、具有良好的安全意识及行为。
2	遵守规范	操作过程中遵守标准和规范。
3	践行 5S	工、量具码放整齐,保持工位清洁卫生,践行现场 5S 管理规范。
4	和谐友善	参赛选手间和谐团结,善意对待其他选手。
5	诚信文明	在提出补时申请时,以及赛后向指导教师描述申诉事实时,不夸大不 扭曲事实。尊重裁判及其他赛场工作人员,言行举止文明。

表 6-1: 职业素养与安全意识事项